机械

当前位置:   主页 > 机械 >

柏村镇新传动设备轮轴式ZPLF60-300直交轴步进减速器

文章来源:ymcdkj 发布时间:2024-05-09 18:21:00

柏村镇新传动设备:轮轴式ZPLF60-300直交轴步进减速器
调速电机在长期使用过程中,由于四周的工作环境条件较差、地面不整洁,时间一长,由于带电以及电枢的吸气作用、电机电磁的吸引等原因,很等闲使尘埃、纸毛、金属屑等进入电机内部,黏附于离合器电枢的内孔和磁极转子的表面。电机维修一旦积累过多便会堵塞其间的空地空闲,使磁极转子与异步电机同速旋转,出现印刷高速飞车、转速无法调整的现象,严重时甚至损环电机转差离合器控制装置的有关元件。对于调速电机滑差电机,应每年定期拆下对其边行除尘清洗,以避免此类标题题目的发生。
柏村镇新传动设备:轮轴式ZPLF60-300直交轴步进减速器


行星齿轮减速机工作原理:
1)齿圈固定,太阳轮主动,行星架被动。 此种组合为降速传动,通常传动比一般为2.5~5,转向相同。
2)齿圈固定,行星架主动,太阳轮被动。此种组合为升速传动,传动比一般为0.2~0.4,转向相同。
3)太阳轮固定,齿圈主动,行星架被动。此种组合为降速传动,传动比一般为1.25~1.67,转向相同。
4)太阳轮固定,行星架主动,齿圈被动。此种组合为升速传动,传动比一般为0.6~0.8,转向相同。
5)行星架固定,太阳轮主动,齿圈被动。传动比一般为1.5~4,转向相反。
6)行星架固定,齿圈主动,太阳轮被动。此种组 向相反。
7)把三元件中任意两元件结合为一体的情况:当把行星架和齿圈结合为一体作为主动件,太阳轮为被动件或者把太阳轮和行星架结合为一体作为主动件,齿圈作为被动件的运动情况。行星齿轮间没有相对运动,作为一个整体运转,传动比为1,转向相同。汽车上常用此种组合方式组成直接档。
8)三元件中任一元件为主动,其余的两元件自由:从分析中可知,其余两元件无确定的转速输出。


柏村镇新传动设备:轮轴式ZPLF60-300直交轴步进减速器

行星减速机的产品特点:
● 机身外观:机身外观干净整洁大方,内部机械结构紧凑,热性能好,经久耐用,配套形式多样化。
● 产品精度:使用超高精度机床,控制齿轮精度在ISO5级。
● 高强度、高刚性:采用一体化行星架设计,实现更高刚度与精度。
● 超静音:从未有过的超静音减速机,采用斜齿轮,比直齿噪音降低10%
● 运转平顺:直齿轮的齿向与齿轮的轴线斜交,齿的啮合更加流畅顺滑
● 低背隙:精密背隙6≤arcmin,减速器精密的特性,充分展现高精度伺服马达的特性
● 体积小:同级产品中体积,设备空间受限的场合
● 高强度:内部组件采用经热之高强度 合金钢,足以应对严峻的恶劣工作环境
● 率:低损耗精密齿轮设计,传动效率高达97%
● 规格齐全:独特多段减速比,精密、经济选择性佳,精密输出之行星齿轮式减速装置,是伺服电机、步进电机等精密传动机构的组合
● 全密封设计:密封式全油封设计,确保润滑油脂不泄漏,专利内齿环设计,确保耐用与降低噪音。



行星齿轮减速机:主要传动结构为:行星轮,太阳轮,外齿圈.
行星减速机因为结构原因,单级减速为3,一般 0,减速机级数一般不超过3,但有部分大减速比减速机有4级减速.
相对其他减速机,行星减速机具有高刚性,高精度(单级可到1分以内),高传动效率(单级在97%-98%),高的 扭矩/体积比,终身免维护等特点.
因为这些特点,行星减速机多数是在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量.
减速机额定输入转速可达到18000rpm(与减速机本身大小有关,减速机越大,额定输入转速越小)以上,工业级行星减速机输出扭矩一般不超过2000Nm,特制超大扭矩行星减速机可到10000Nm以上.工作温度一般在-25℃到100℃左右,通过改变润滑脂可改变其工作温度.
关于行星减速机的几个概念:
级数:行星齿轮的套数.由于一套星星齿轮无法满足较大的传动比,有时需要2套或者3套来满足拥护较大的传动比的要求.由于增加了星星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降.
回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.单位是"分",就是一度的六十分之一.也有人称之为背隙.

柏村镇新传动设备:轮轴式ZPLF60-300直交轴步进减速器

+
14.3

电缆拖链型号的确定步骤如下:对于电力电缆必须留出不小于1%的余量,对于水管必须留出不小于2%的余量。尽量避免将不同材质外套的电缆放入在一条拖链,以减少磨损。如需将数根电缆放置于一条拖链中,尽可能将他们用隔板隔,如果不能,则需确保内部空间不允许电缆交叠,4.根据各条电缆的重量和尺寸对称摆放,把重的和大的电缆放在两侧,把轻的和小的电缆放在中间。计算电缆的行程,即电缆运行长度;根据电缆的直径确定拖链支撑板的高度,进而确定拖链型号、拖链宽度;根据电缆的重量确定拖链有足够的承重能力。